[Go] 利用可编程排序准则对结构类型进行排序
sorting a struct type using programmable sort criteria 利用可编程排序准则对结构类型进行排序
在 go 源码中看到一个设计模式
代码位置: go/src/sort/example_keys_test.go
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package sort_test
import (
"fmt"
"sort"
)
// A couple of type definitions to make the units clear.
type earthMass float64
type au float64
// A Planet defines the properties of a solar system object.
type Planet struct {
name string
mass earthMass
distance au
}
// By is the type of a "less" function that defines the ordering of its Planet arguments.
type By func(p1, p2 *Planet) bool
// Sort is a method on the function type, By, that sorts the argument slice according to the function.
func (by By) Sort(planets []Planet) {
ps := &planetSorter{
planets: planets,
by: by, // The Sort method's receiver is the function (closure) that defines the sort order.
}
sort.Sort(ps)
}
// planetSorter joins a By function and a slice of Planets to be sorted.
type planetSorter struct {
planets []Planet
by func(p1, p2 *Planet) bool // Closure used in the Less method.
}
// Len is part of sort.Interface.
func (s *planetSorter) Len() int {
return len(s.planets)
}
// Swap is part of sort.Interface.
func (s *planetSorter) Swap(i, j int) {
s.planets[i], s.planets[j] = s.planets[j], s.planets[i]
}
// Less is part of sort.Interface. It is implemented by calling the "by" closure in the sorter.
func (s *planetSorter) Less(i, j int) bool {
return s.by(&s.planets[i], &s.planets[j])
}
var planets = []Planet{
{"Mercury", 0.055, 0.4},
{"Venus", 0.815, 0.7},
{"Earth", 1.0, 1.0},
{"Mars", 0.107, 1.5},
}
// ExampleSortKeys demonstrates a technique for sorting a struct type using programmable sort criteria.
func Example_sortKeys() {
// Closures that order the Planet structure.
name := func(p1, p2 *Planet) bool {
return p1.name < p2.name
}
mass := func(p1, p2 *Planet) bool {
return p1.mass < p2.mass
}
distance := func(p1, p2 *Planet) bool {
return p1.distance < p2.distance
}
decreasingDistance := func(p1, p2 *Planet) bool {
return distance(p2, p1)
}
// Sort the planets by the various criteria.
By(name).Sort(planets)
fmt.Println("By name:", planets)
By(mass).Sort(planets)
fmt.Println("By mass:", planets)
By(distance).Sort(planets)
fmt.Println("By distance:", planets)
By(decreasingDistance).Sort(planets)
fmt.Println("By decreasing distance:", planets)
// Output: By name: [{Earth 1 1} {Mars 0.107 1.5} {Mercury 0.055 0.4} {Venus 0.815 0.7}]
// By mass: [{Mercury 0.055 0.4} {Mars 0.107 1.5} {Venus 0.815 0.7} {Earth 1 1}]
// By distance: [{Mercury 0.055 0.4} {Venus 0.815 0.7} {Earth 1 1} {Mars 0.107 1.5}]
// By decreasing distance: [{Mars 0.107 1.5} {Earth 1 1} {Venus 0.815 0.7} {Mercury 0.055 0.4}]
}
- 传统的排序我们是通过实现
sort
接口,在其Less
方法中对需要排序的内容进行顺序判断 - 上述例子能够灵活的使用结构体的任意字段作为排序规则依据(name/mass/distance) ⬇
- 使用组合的方式将待排序内容
planets
及自定义排序功能by
进行组合 得到一个新的结构体planetSorter
- 在
planetSorter
上实现sort
接口后, 便可直接调用sort.Sort(ps)
对进行排序,排序的实际规则在func (s *planetSorter) Less(i, j int) bool
内实现,在Less
方法中调用了自己的by
planetSorter
是一个内部使用的结构体,外部无需了解- 最后得到的是一种设计模式:(功能).(对象) 和以往的设计模式不同,以往都是面向对象的设计模式即 (对象).(功能)
- 这种设计模式的好处是一个功能可以多处复用在不同对象上
- 这种模式首先对功能定义进行抽象,然后为这个功能定义接收将作用此功能的对象的方法 这里是
func (by By) Sort(planets []Planet)
- 这里的功能定义可以是一个函数,譬如上述的
By